NOTE ON MATH 2060: MATHEMATICAL ANALYSIS II: 2017-18

CHI-WAI LEUNG

1. RIEMANN INTEGRABLE FUNCTIONS

We will use the following notation throughout this chapter.

(i): All functions f, g, h... are bounded real valued functions defined on [a,b] and m < f < M on
[a,b] .

(ii): Let P : a = 29 < 1 < .... < x, = b denote a partition on [a,b]; Put Az; = z; — x;—1 and
| P|| = max Ax;.

(iii): M;(f, P) :=sup{f(x):x € [xi—1,zi}; mi(f, P) == inf{f(x) : x € [x;_1,2;}.
Set wi(f, P) = Mi(f, P) — mi(f, P).

(iv): (the upper sum of f): U(f, P):= > M;(f, P)Ax;
(the lower sum of f). L(f, P):=>_ m;(f, P)Ax;.

Remark 1.1. [t is clear that for any partition on [a,b], we always have

The following lemma is the critical step in this section.

Lemma 1.2. Let P and Q be the partitions on [a,b]. We have the following assertions.

(i) If P C Q, then L(f, P) < L(f,Q) < U(f,Q) < U(f,P).
(i) We always have L(f, P) < U(f,Q).

Proof. For Part (i), we first claim that L(f, P) < L(f,Q) if P C @. By using the induction on
[ := #Q — #P, it suffices to show that L(f,P) < L(f,Q)asl=1. Let P:a=xo<x1 < ---<xp=0>
and @ = P U {c}. Then ¢ € (zs_1,x5) for some s. Notice that we have

ms(f7 P) < min{ms(f7 Q)a ms+1(f7 Q)}
So, we have

ms(f7 P)(I’s - xsfl) < ms(f7 Q)(C - 33'3,1) + merl(fa Q)(xs - C)‘

This gives the following inequality as desired.
(L1)  L(f,Q) = L(f, P) = my(f. Q)¢ — 1) + a1 (£, Q) (s — ¢) — my(f, P) (s — 1) = 0.

Now by considering — f in the Inequality 1.1 above, we see that U(f,Q) < U(f, P).
For Part (i), let P and @ be any pair of partitions on [a, b]. Notice that P U @ is also a partition on
[a,b] with P C PUQ and Q C PUQ. So, Part (i) implies that

L(f,P) < L(f,PUQ) <U(f,PUQ) <U(f,Q).
The proof is complete. O
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The following plays an important role in this chapter.
Definition 1.3. Let f be a bounded function on [a,b]. The upper integral (resp. lower integral) of f
over [a, b], write fabf (resp. f;f), is defined by

)

/ f=if{U(f, P): P is a partation on [a,bl]}.

a

(resp.

/bf = sup{L(f, P) : P is a partation on [a,b]}.)

Notice that the upper integral and lower integral of f must exist by Remark 1.1.

Proposition 1.4. Let f and g both are bounded functions on [a,b]. With the notation as above, we

always have
(i) B
/ab r< 't

(i) ['(~f)=—['t.

(iii) B
/abf+/abg§/ab(f+g)§/:(f+g)S/aber :g.

Proof. Part (i) follows from Lemma 1.2 at once.
Part (i7) is clearly obtained by L(—f, P) = —=U(f, P).
For proving the inequality f;f + ffg < ff(f + g) < first. It is clear that we have L(f, P)+ L(g, P) <

L(f + g, P) for all partitions P on [a,b]. Now let P; and P, be any partition on [a,b]. Then by Lemma
1.2, we have

b
L(f,P1) + L(g, ) < L(f,PLUP) + L(g,PLUP) < L(f + g, PL U P,) S/ (f +9).

So, we have

(1.2) /abf+/abg§/ab(f+g)-

As before, we consider —f and —g in the Inequality 1.2, we get E(f +g) < T;f +f7bg as desired. [

The following example shows the strict inequality in Proposition 1.4 (ii) may hold in general.

Example 1.5. Define a function f,g:[0,1] — R by
1 if xe€(0,1]NQ;
Fa) = { feel0.1nQ

-1 otherwise.



and

1 otherwise.

{—1 if ©€0,1]NQ;

Then it is easy to see that f + g =0 and

—2=/abf / /f+g—0:/f+g / /

We can now reaching the main definition in this chapter.

So, we have

Definition 1.6. Let f be a bounded function on [a,b]. We say that f is Riemann integrable over [a, b
if Tbaf = fabf In this case, we write fabf for this common value and it is called the Riemann integral
of f over [a,b].

Also, write R[a,b] for the class of Riemann integrable functions on [a,b].

Proposition 1.7. With the notation as above, R[a,b] is a vector space over R and the integral

/ feRabH/feR

defines a linear functional, that is, af + Bg € Rla,b] and fa (af + Bg) = Oéf;f + Bffg for all
fyg € Rla,b] and o, B € R.

Proof. Let f,g € R[a,b] and o, f € R. Notice that if o > 0, it is clear that T;Oéf = O‘Ef - Oéf;f —
oszf = ffozf. Also, if o < 0, we have f;af = afff — Oéfff — Oéf;f _ ffOéf- Therefore, we have

ffaf = afabf for all « € R. For showing f + g € R[a,b] and ff(f +g) = f;f + f;g, these will
follows from Proposition 1.4 (iii) at once. The proof is finished. O

The following result is the important characterization of a Riemann integrable function. Before
showing this, we will use the following notation in the rest of this chapter.
For a partition P:a=20<z1 < -+ <xp=band 1 <17 <n, put

wi(f, P) :=sup{|f(x) — f(2')| : z,2" € [wi_1, 23]}
It is easy to see that U(f, P) — L(f, P) = >/, wi(f, P)Ax;.

Theorem 1.8. Let f be a bounded function on [a,b]. Then f € Rla,b] if and only if for all e > 0,
there is a partition P :a =x9 < --- <z, = b on [a,b] such that

(1.3) 0<U(f,P sz f, P)Azx; < e.
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Proof. Suppose that f € Ra,b]. Let € > 0. Then by the definition of the upper integral and lower

integral of f, we can find the partitions P and @ such that U(f, P) < fff + ¢ and fff —e < L(f,Q).
By considering the partition P U (), we see that o

b )
/f—a<L<f,Q>gL(f:Pu@)5U<f,PUQ>SU<f,P></f+a.

Since f(ff = f;f = fabf, we have 0 < U(f,PUQ) — L(f,PUQ) < 2¢. So, the partition PUQ is as
desired. o

Conversely, let € > 0, assume that the Inequality 1.3 above holds for some partition P. Notice that
we have

L(f,P) < /abf < /abf <U(f,P).

So, we have 0 < Tff — fff < ¢ for all € > 0. The proof is finished. O

Remark 1.9. Theorem 1.8 tells us that a bounded function f is Riemann integrable over [a,b] if and
only if the “size” of the discontinuous set of f is arbitrary small.

Example 1.10. Let f: [0,1] — R be the function defined by

1 if © = 2, where p, q are relatively prime positive integers;
fl@)=47 P

0 otherwise.
Then f € R[0,1].
(Notice that the set of all discontinuous points of f, say D, is just the set of all (0,1] N Q. Since the
set (0,1] N Q is countable, we can write (0,1] N Q = {21, z2,....}. So, if we let m(D) be the “size” of
the set D, then m(D) = m(U;21{zi}) = Yoy m({z}) = 0, in here, you may think that the size of
each set {z;} is 0. )
Proof. Let € > 0. By Theorem 1.8, it aims to find a partition P on [0, 1] such that

U(f,P) —L(f,P) <E.

Notice that for x € [0, 1] such that f(z) > ¢ if and only if x = ¢/p for a pair of relatively prime positive
integers p, ¢ with }% > e. Since 1 < g < p, there are only finitely many pairs of relatively prime positive
integers p and ¢ such that f(%) >e. So, if welet S :={x €0,1]: f(x) > ¢}, then S is a finite subset

of [0,1]. Let L be the number of the elements in S. Then, for any partition P:a =9 < -+ < z, = 1,
we have

n
i=1 ©Ti—1,2:]NS=0  i:[zi—1,x,]NSHAD
Notice that if [z;—1,2;] NS = 0, then we have w;(f, P) < ¢ and thus,
Z wi(f, P)Az; <e Z Azx; <e(1-0).
i:[zi_l,zi]ﬁszm i:[wi_l,wi}ﬂS:@
On the other hand, since there are at most 2L sub-intervals [z;_1, 2;] such that [z;—1,2;] NS # () and
wi(f,P) <1foralli=1,..,n, so, we have

SN wlhPA <1 Y Az <2L|P|.

i:[z‘ifl,zi]ﬂS;ﬁ@ i:[mi,l,xi}ﬂs;é@



We can now conclude that for any partition P, we have
n
> wi(f, P)Az; < e+ 2L||P|.
i=1

So, if we take a partition P with || P| < e/(2L), then we have > " | w;(f, P)Az; < 2e.
The proof is finished. H

Proposition 1.11. Let f be a function defined on |a,b]. If f is either monotone or continuous on
[a,b], then f € R[a,b].

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing.
Notice that for any partition P : a = xg < --+ < z,, = b, we have w;(f, P) = f(x;) — f(xi—1). So, if
|P|| < e, we have

D wilf, P)Az =Y (f(wi)—f(wi1)Axs < [P (f(@i)—f (i) = [[PI(f(b)—f(a) < e(f(b)—f(a)).
i=1 i=1 i=1

Therefore, f € Rla,b] if f is monotone.

Suppose that f is continuous on [a,b]. Then f is uniform continuous on [a,b]. Then for any € > 0,
there is 6 > 0 such that |f(z) — f(2)| < € as x, 2’ € [a,b] with |z — 2’| < J. So, if we choose a partition
P with ||P|| < 6, then w;(f, P) < ¢ for all i. This implies that

Zwi(f, P)Az; < 52 Az; =¢e(b—a).
i=1 i=1
The proof is complete. O

Proposition 1.12. We have the following assertions.

(i) If 9 € Rla,b] with f < g, then [} f < [} g.
(ii) If f € Rla,b], then the absolute valued function |f| € Rla,b]. In this case, we have |fff| <

b
Ja 11
Proof. For Part (i), it is clear that we have the inequality U(f, P) < U(g, P) for any partition P. So,

we have [7f = [ < [J9= [} g.

For Part (i7), the integrability of |f| follows immediately from Theorem 1.8 and the simple inequality
A1) = [FI")] < [f(@") = f(2")] for all a’,2" € [a,b]. Thus, we have U(|f],P) — L(|f|,P) <
U(f,P)— L(f,P) for any partition P on [a, b].

Finally, since we have —f < |f| < f, by Part (i), we have ]fff| < f; |f| at once. O

Proposition 1.13. Let a < ¢ < b. We have f € R[a,b] if and only if the restrictions f|(, € Rla, c]
and flicp € Rlc,b]. In this case we have

(1.4) /abfz/achr/cbf-

P?“OOf. Let fl = f’[a,c} and f2 = f’[qb]'
It is clear that we always have

U(f1,P1) — L(f1, P1) + U(f2, P2) — L(f2, P2) = U(P, f) — L(f, P)

for any partition P; on [a,c] and P, on [c,b] with P = P, U P.
From this, we can show the sufficient condition at once.
For showing the necessary condition, since f € R[a,b], for any € > 0, there is a partition @ on [a, ]
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such that U(f,Q) — L(f,Q) < € by Theorem 1.8. Notice that there are partitions P; and P; on [a, ]
and [c, b] respectively such that P := Q U {c} = P U P,. Thus, we have

U(flppl) _L(fl)Pl) +U(f2)P2) _L(f27P2) = U(f,P) —L(f,P) < U(f’Q) _L(qu) <e.
So, we have f1 € R[a,c| and fa € R]c, b].
It remains to show the Equation 1.4 above. Notice that for any partition P, on [a,c] and P on [c, b],
we have

b b
L(fl,P1)+L(f2,P2):L(fyplUPQ)S/f=/ f

So, we have [T f + fcb f < f; f. Then the inverse inequality can be obtained at once by considering
the function —f. Then the resulted is obtained by using Theorem 1.8. g



