NOTE ON MATH 2060: MATHEMATICAL ANALYSIS II: 2017-18

CHI-WAI LEUNG

1. RIEMANN INTEGRABLE FUNCTIONS

We will use the following notation throughout this chapter.

- (i): All functions f, g, h... are bounded real valued functions defined on [a, b] and $m \le f \le M$ on [a, b].
- (ii): Let $P: a = x_0 < x_1 < \dots < x_n = b$ denote a partition on [a, b]; Put $\Delta x_i = x_i x_{i-1}$ and $||P|| = \max \Delta x_i$.
- (iii): $M_i(f, P) := \sup\{f(x) : x \in [x_{i-1}, x_i\}; m_i(f, P) := \inf\{f(x) : x \in [x_{i-1}, x_i\}.$ Set $\omega_i(f, P) = M_i(f, P) - m_i(f, P).$
- (iv): (the upper sum of f): $U(f, P) := \sum M_i(f, P) \Delta x_i$ (the lower sum of f). $L(f, P) := \sum m_i(f, P) \Delta x_i$.

Remark 1.1. It is clear that for any partition on [a, b], we always have

- (i) $m(b-a) \le L(f,P) \le U(f,P) \le M(b-a).$
- (*ii*) L(-f, P) = -U(f, P) and U(-f, P) = -L(f, P).

The following lemma is the critical step in this section.

Lemma 1.2. Let P and Q be the partitions on [a, b]. We have the following assertions.

- (i) If $P \subseteq Q$, then $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$.
- (ii) We always have $L(f, P) \leq U(f, Q)$.

Proof. For Part (i), we first claim that $L(f, P) \leq L(f, Q)$ if $P \subseteq Q$. By using the induction on l := #Q - #P, it suffices to show that $L(f, P) \leq L(f, Q)$ as l = 1. Let $P : a = x_0 < x_1 < \cdots < x_n = b$ and $Q = P \cup \{c\}$. Then $c \in (x_{s-1}, x_s)$ for some s. Notice that we have

$$m_s(f, P) \le \min\{m_s(f, Q), m_{s+1}(f, Q)\}\$$

So, we have

$$m_s(f, P)(x_s - x_{s-1}) \le m_s(f, Q)(c - x_{s-1}) + m_{s+1}(f, Q)(x_s - c)$$

This gives the following inequality as desired.

(1.1)
$$L(f,Q) - L(f,P) = m_s(f,Q)(c-x_{s-1}) + m_{s+1}(f,Q)(x_s-c) - m_s(f,P)(x_s-x_{s-1}) \ge 0.$$

Now by considering -f in the Inequality 1.1 above, we see that $U(f, Q) \leq U(f, P)$. For Part (*ii*), let P and Q be any pair of partitions on [a, b]. Notice that $P \cup Q$ is also a partition on [a, b] with $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$. So, Part (*i*) implies that

$$L(f, P) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, Q)$$

The proof is complete.

Date: February 7, 2018.

The following plays an important role in this chapter.

Definition 1.3. Let f be a bounded function on [a,b]. The upper integral (resp. lower integral) of fover [a, b], write $\overline{\int_a^b} f$ (resp. $\underline{\int_a^b} f$), is defined by

$$\overline{\int_{a}^{b}} f = \inf\{U(f, P) : P \text{ is a partition on } [a, b]\}.$$

(resp.

$$\underline{\int_{a}^{b}} f = \sup\{L(f, P) : P \text{ is a partation on } [a, b]\}.)$$

Notice that the upper integral and lower integral of f must exist by Remark 1.1.

Proposition 1.4. Let f and g both are bounded functions on [a, b]. With the notation as above, we always have

(i)

$$\underline{\int_{a}^{b}} f \le \overline{\int_{a}^{b}} f$$

$$\begin{array}{l} (ii) \quad \underline{\int_{a}^{b}}(-f) = -\overline{\int_{a}^{b}}f.\\ (iii) \quad \underline{\int_{a}^{b}}f + \underline{\int_{a}^{b}}g \leq \underline{\int_{a}^{b}}(f+g) \leq \overline{\int_{a}^{b}}(f+g) \leq \overline{\int_{a}^{b}}f + \overline{\int_{a}^{b}}g. \end{array}$$

Proof. Part (i) follows from Lemma 1.2 at once.

Part (*ii*) is clearly obtained by L(-f, P) = -U(f, P). For proving the inequality $\underline{\int_a^b} f + \underline{\int_a^b} g \leq \underline{\int_a^b} (f+g) \leq \text{first.}$ It is clear that we have $L(f, P) + L(g, P) \leq L(f+g, P)$ for all partitions P on [a, b]. Now let P_1 and P_2 be any partition on [a, b]. Then by Lemma 1.2, we have

$$L(f, P_1) + L(g, P_2) \le L(f, P_1 \cup P_2) + L(g, P_1 \cup P_2) \le L(f + g, P_1 \cup P_2) \le \underline{\int_a^o} (f + g).$$

So, we have

(1.2)
$$\underline{\int_{a}^{b}}f + \underline{\int_{a}^{b}}g \le \underline{\int_{a}^{b}}(f+g)$$

As before, we consider -f and -g in the Inequality 1.2, we get $\overline{\int_a^b}(f+g) \leq \overline{\int_a^b}f + \overline{\int_a^b}g$ as desired. \Box

The following example shows the strict inequality in Proposition 1.4 (*iii*) may hold in general.

Example 1.5. Define a function $f, g: [0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \mathbb{Q}; \\ -1 & \text{otherwise.} \end{cases}$$

and

$$g(x) = \begin{cases} -1 & \text{if } x \in [0,1] \cap \mathbb{Q}; \\ 1 & \text{otherwise.} \end{cases}$$

Then it is easy to see that $f + g \equiv 0$ and

$$\overline{\int_0^1} f = \overline{\int_0^1} g = 1 \quad and \quad \underline{\int_0^1} f = \underline{\int_0^1} g = -1.$$

So, we have

$$-2 = \underline{\int_{a}^{b}}f + \underline{\int_{a}^{b}}g < \underline{\int_{a}^{b}}(f+g) = 0 = \overline{\int_{a}^{b}}(f+g) < \overline{\int_{a}^{b}}f + \overline{\int_{a}^{b}}g = 2.$$

We can now reaching the main definition in this chapter.

Definition 1.6. Let f be a bounded function on [a, b]. We say that f is Riemann integrable over [a, b] if $\overline{\int_{b}^{a}} f = \frac{\int_{a}^{b} f}{\int_{a}^{b}} f$. In this case, we write $\int_{a}^{b} f$ for this common value and it is called the Riemann integral of f over [a, b].

Also, write R[a, b] for the class of Riemann integrable functions on [a, b].

Proposition 1.7. With the notation as above, R[a, b] is a vector space over \mathbb{R} and the integral

$$\int_{a}^{b} : f \in R[a, b] \mapsto \int_{a}^{b} f \in \mathbb{R}$$

defines a linear functional, that is, $\alpha f + \beta g \in R[a,b]$ and $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$ for all $f, g \in R[a,b]$ and $\alpha, \beta \in \mathbb{R}$.

Proof. Let $f, g \in R[a, b]$ and $\alpha, \beta \in \mathbb{R}$. Notice that if $\alpha \ge 0$, it is clear that $\overline{\int_a^b} \alpha f = \alpha \overline{\int_a^b} f = \alpha \int_a^b f = \alpha \int_a^$

The following result is the important characterization of a Riemann integrable function. Before showing this, we will use the following notation in the rest of this chapter. For a partition $P: a = x_0 < x_1 < \cdots < x_n = b$ and $1 \le i \le n$, put

$$\omega_i(f, P) := \sup\{|f(x) - f(x')| : x, x' \in [x_{i-1}, x_i]\}.$$

It is easy to see that $U(f, P) - L(f, P) = \sum_{i=1}^{n} \omega_i(f, P) \Delta x_i$.

Theorem 1.8. Let f be a bounded function on [a, b]. Then $f \in R[a, b]$ if and only if for all $\varepsilon > 0$, there is a partition $P : a = x_0 < \cdots < x_n = b$ on [a, b] such that

(1.3)
$$0 \le U(f,P) - L(f,P) = \sum_{i=1}^{n} \omega_i(f,P) \Delta x_i < \varepsilon.$$

CHI-WAI LEUNG

Proof. Suppose that $f \in R[a, b]$. Let $\varepsilon > 0$. Then by the definition of the upper integral and lower integral of f, we can find the partitions P and Q such that $U(f, P) < \overline{\int_a^b} f + \varepsilon$ and $\underline{\int_a^b} f - \varepsilon < L(f, Q)$. By considering the partition $P \cup Q$, we see that

$$\underbrace{\int_{a}^{b} f - \varepsilon}_{-} < L(f,Q) \le L(f,P \cup Q) \le U(f,P \cup Q) \le U(f,P) < \int_{a}^{b} f + \varepsilon.$$

Since $\int_a^b f = \overline{\int_a^b} f = \underline{\int_a^b} f$, we have $0 \le U(f, P \cup Q) - L(f, P \cup Q) < 2\varepsilon$. So, the partition $P \cup Q$ is as desired.

Conversely, let $\varepsilon > 0$, assume that the Inequality 1.3 above holds for some partition P. Notice that we have

$$L(f, P) \leq \underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f \leq U(f, P).$$

So, we have $0 \leq \overline{\int_a^b} f - \underline{\int_a^b} f < \varepsilon$ for all $\varepsilon > 0$. The proof is finished.

Remark 1.9. Theorem 1.8 tells us that a bounded function f is Riemann integrable over [a, b] if and only if the "size" of the discontinuous set of f is arbitrary small.

Example 1.10. Let $f : [0,1] \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} \frac{1}{p} & \text{if } x = \frac{q}{p}, \text{ where } p, q \text{ are relatively prime positive integers}; \\ 0 & \text{otherwise.} \end{cases}$$

Then $f \in R[0, 1]$ *.*

(Notice that the set of all discontinuous points of f, say D, is just the set of all $(0,1] \cap \mathbb{Q}$. Since the set $(0,1] \cap \mathbb{Q}$ is countable, we can write $(0,1] \cap \mathbb{Q} = \{z_1, z_2, ...\}$. So, if we let m(D) be the "size" of the set D, then $m(D) = m(\bigcup_{i=1}^{\infty} \{z_i\}) = \sum_{i=1}^{\infty} m(\{z_i\}) = 0$, in here, you may think that the size of each set $\{z_i\}$ is 0.)

Proof. Let $\varepsilon > 0$. By Theorem 1.8, it aims to find a partition P on [0, 1] such that

$$U(f,P) - L(f,P) < \varepsilon.$$

Notice that for $x \in [0, 1]$ such that $f(x) \ge \varepsilon$ if and only if x = q/p for a pair of relatively prime positive integers p, q with $\frac{1}{p} \ge \varepsilon$. Since $1 \le q \le p$, there are only finitely many pairs of relatively prime positive integers p and q such that $f(\frac{q}{p}) \ge \varepsilon$. So, if we let $S := \{x \in [0, 1] : f(x) \ge \varepsilon\}$, then S is a finite subset of [0, 1]. Let L be the number of the elements in S. Then, for any partition $P : a = x_0 < \cdots < x_n = 1$, we have

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i = \left(\sum_{i: [x_{i-1}, x_i] \cap S = \emptyset} + \sum_{i: [x_{i-1}, x_i] \cap S \neq \emptyset}\right) \omega_i(f, P) \Delta x_i.$$

Notice that if $[x_{i-1}, x_i] \cap S = \emptyset$, then we have $\omega_i(f, P) \leq \varepsilon$ and thus,

$$\sum_{i:[x_{i-1},x_i]\cap S=\emptyset} \omega_i(f,P)\Delta x_i \le \varepsilon \sum_{i:[x_{i-1},x_i]\cap S=\emptyset} \Delta x_i \le \varepsilon(1-0).$$

On the other hand, since there are at most 2L sub-intervals $[x_{i-1}, x_i]$ such that $[x_{i-1}, x_i] \cap S \neq \emptyset$ and $\omega_i(f, P) \leq 1$ for all i = 1, ..., n, so, we have

$$\sum_{i:[x_{i-1},x_i]\cap S\neq\emptyset} \omega_i(f,P)\Delta x_i \le 1 \cdot \sum_{i:[x_{i-1},x_i]\cap S\neq\emptyset} \Delta x_i \le 2L \|P\|.$$

 \square

We can now conclude that for any partition P, we have

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \le \varepsilon + 2L \|P\|.$$

So, if we take a partition P with $||P|| < \varepsilon/(2L)$, then we have $\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \leq 2\varepsilon$. The proof is finished.

Proposition 1.11. Let f be a function defined on [a,b]. If f is either monotone or continuous on [a, b], then $f \in R[a, b]$.

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing. Notice that for any partition $P : a = x_0 < \cdots < x_n = b$, we have $\omega_i(f, P) = f(x_i) - f(x_{i-1})$. So, if $||P|| < \varepsilon$, we have

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \Delta x_i < \|P\| \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = \|P\| (f(b) - f(a)) < \varepsilon(f(b) - f(a))$$

Therefore, $f \in R[a, b]$ if f is monotone.

Suppose that f is continuous on [a, b]. Then f is uniform continuous on [a, b]. Then for any $\varepsilon > 0$, there is $\delta > 0$ such that $|f(x) - f(x')| < \varepsilon$ as $x, x' \in [a, b]$ with $|x - x'| < \delta$. So, if we choose a partition P with $||P|| < \delta$, then $\omega_i(f, P) < \varepsilon$ for all i. This implies that

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \le \varepsilon \sum_{i=1}^{n} \Delta x_i = \varepsilon(b-a).$$

The proof is complete.

Proposition 1.12. We have the following assertions.

- (i) If $f, g \in R[a, b]$ with $f \leq g$, then $\int_a^b f \leq \int_a^b g$. (ii) If $f \in R[a, b]$, then the absolute valued function $|f| \in R[a, b]$. In this case, we have $|\int_a^b f| \leq 1$ $\int_{a}^{b} |f|$

Proof. For Part (i), it is clear that we have the inequality $U(f, P) \leq U(g, P)$ for any partition P. So, we have $\int_a^b f = \overline{\int_a^b} f \le \overline{\int_a^b} g = \int_a^b g$. For Part (*ii*), the integrability of |f| follows immediately from Theorem 1.8 and the simple inequality

 $||f|(x') - |f|(x'')| \le |f(x') - f(x'')|$ for all $x', x'' \in [a, b]$. Thus, we have $U(|f|, P) - L(|f|, P) \le C$ U(f, P) - L(f, P) for any partition P on [a, b].

Finally, since we have $-f \leq |f| \leq f$, by Part (i), we have $|\int_a^b f| \leq \int_a^b |f|$ at once.

Proposition 1.13. Let a < c < b. We have $f \in R[a, b]$ if and only if the restrictions $f|_{[a,c]} \in R[a, c]$ and $f|_{[c,b]} \in R[c,b]$. In this case we have

(1.4)
$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Proof. Let $f_1 := f|_{[a,c]}$ and $f_2 := f|_{[c,b]}$. It is clear that we always have

$$U(f_1, P_1) - L(f_1, P_1) + U(f_2, P_2) - L(f_2, P_2) = U(P, f) - L(f, P)$$

for any partition P_1 on [a, c] and P_2 on [c, b] with $P = P_1 \cup P_2$.

From this, we can show the sufficient condition at once.

For showing the necessary condition, since $f \in R[a, b]$, for any $\varepsilon > 0$, there is a partition Q on [a, b]

such that $U(f,Q) - L(f,Q) < \varepsilon$ by Theorem 1.8. Notice that there are partitions P_1 and P_2 on [a,c] and [c,b] respectively such that $P := Q \cup \{c\} = P_1 \cup P_2$. Thus, we have

$$U(f_1, P_1) - L(f_1, P_1) + U(f_2, P_2) - L(f_2, P_2) = U(f, P) - L(f, P) \le U(f, Q) - L(f, Q) < \varepsilon.$$

So, we have $f_1 \in R[a, c]$ and $f_2 \in R[c, b]$. It remains to show the Equation 1.4 above. Notice that for any partition P_1 on [a, c] and P_2 on [c, b], we have L

$$L(f_1, P_1) + L(f_2, P_2) = L(f, P_1 \cup P_2) \le \underline{\int_a^b} f = \int_a^b f.$$

So, we have $\int_a^c f + \int_c^b f \leq \int_a^b f$. Then the inverse inequality can be obtained at once by considering the function -f. Then the resulted is obtained by using Theorem 1.8.